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THE PROBLEMS
A rational function is a ratio of two polynomials.

One source of solutions to Problem 1 comes from the following
problem when the functions have rational coefficients:




Title Introduction Solving the multiset problem Back to the original problem
0@0000 00000 00000

SOME EXAMPLES:

> Xmoxnzxnoxmzxmn



Title Introduction Solving the multiset problem Back to the original problem
0@0000 00000 00000

SOME EXAMPLES:

> XMoo X" = X"o X" = X"
» For an arbitrary rational function h(X),

X2 0 Xh(X?) = Xh(X)? 0 X* = X?h(X?)%.
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OUTLINE OF OUR STRATEGY

Rational function

Hurwitz’s Theorem, problems Faltings’, Riemann-
reducibility checking / \Hurwitz Formula
Ramification ’ ‘ Ramification
multisets Multiset
of a and ¢ ’ ‘ Conditions

Combinatorics, com-
puter programs
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RAMIFICATION
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RAMIFICATION

» Example: f(X) = X? + X* = X*(X + 1) has E¢(0) = [3,1].
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MULTISET PROBLEM
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SOLVING THE MULTISET PROBLEM

Let m, n denote the degrees of a2 and c. We will assume that
n > m. We split into 3 cases:

1. n > m > 250.
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SOLVING THE MULTISET PROBLEM

Let m, n denote the degrees of a2 and c. We will assume that
n > m. We split into 3 cases:

1. n > m > 250.
2. m<250and n > 10 - m.
3. m<250and n < 10 - m.
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» Locally: Any multiset A; must be almost all copies of the
same “dominant number,” k;.
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SOLVING THE MULTISET PROBLEM

» Locally: Any multiset A; must be almost all copies of the
same “dominant number,” k;.

» Globally: We find all the possibilities for {k;}.
» For each possibility of {k;}, we solve for {A;}.
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RESULTS
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1
Y (1-—-)<2
i=1 ai

where a; > 2.
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Y(a--)<2
i=1 ai
where a; > 2.

1. (2,2,2,2)
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where u is any integer
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(2,2,2,2)
(2,3,6)
(2,3,5)
(2,3,4)
(2,4,4)
(3,3,3)
(2,2,u) where u is any integer

(u,v) where u and v are any integers
(

u) where u is any 1nteger
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SOLVING FOR THE A;

1. AfUAUA3UA, = [14,22m—2]‘
8. A] =A2 = [m]
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SOLVING FOR THE C;

For example, suppose that A; = A = [m]. This corresponds to
a(X) = X",

1. ¢(X) = h(X)"X for k relatively prime to m,

2. m=6and c(X) = h(X)°X3(X — 1)*2,
3. m=4and c(X) = h(X)*X?(X - 1)*1,
4 (X) = h(X

t

. m=3and ¢(X) = h(X)3X* (X — 1)*! (with the +
independent),
5. m=2and ¢(X)) = h(X)?X(X — 1)(X — Xp) (with
0#x0 #1,

where h(X) is any rational function.
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BACK TO THE ORIGINAL PROBLEMS

» checking that functions 2 and c exist.



Title Introduction Solving the multiset problem Back to the original problem
000000 00000 ©0000

BACK TO THE ORIGINAL PROBLEMS

» checking that functions 2 and c exist.

» determining whether a(X) — ¢(Y) is irreducible
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EXISTENCE OF RATIONAL FUNCTIONS
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EXISTENCE OF RATIONAL FUNCTIONS
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TESTING FOR IRREDUCIBILITY
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TESTING FOR IRREDUCIBILITY

This is similar to one of our previous conditions, so we usually
keep c the same and vary a to show that c is decomposable so
that a(X) — ¢(Y) is reducible.
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» Finish finding a and c for the case in which a’s multisets
have small lcm.
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FUTURE RESEARCH

» Finish finding a and c for the case in which a’s multisets
have small lcm.

» Continue to lower the bounds for 250 and 10 above.

» The case in which a(X) — c(Y) is not irreducible.
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